次世代型革新高出力蓄電池
「金属触媒フリーリチウム空気電池」の開発

伊藤 良一
(東北大学 原子分子材料科学高等研究機構(AIMR) 助教、現在、筑波大学 数理物質系 准教授

2015年12月30日水曜日

論文紹介:ナノ多孔質グラフェンにポリピロールを担持したスーパーキャパシタ

 今回、東北大学東北大学原子分子材料科学高等研究機構(AIMR)で研究を進めている3次元ナノ多孔質グラフェンにポリピロール(導電性ポリマー)を担持したスーパーキャパシタの開発に成功しました。今回の論文は私が指導を担当している学生のうちの一人で博士学生2年生の論文です。
 私はスーパーキャパシタは専門外なのでNEC/TOKINの説明を引用すると、「電気二重層コンデンサ(スーパーキャパシタ)は数十ミリファラッド以上の非常に大きな静電容量を有し、充放電サイクル特性、急速充放電に優れ、また、広い温度範囲、環境に優しいという特徴をもつ蓄電デバイスです。主な用途としては、RTC、メモリー等のバックアップ用途やモーター起動時の電力のアシスト、供給用電源等があります。使用される機器はAV機器等のコンシューマ機器、プリンタ等のOA機器、カーオーディオ等の車載機器等、非常に幅広い分野で多岐にわたっています。」と説明をされています。

つまり、
電池・・・化学反応を通して化合物から電気の出し入れを行う
キャパシタ・・・コンデンサに電気を電荷として溜める
となります。  ここで大事なポイントは電気を電荷として溜めるためには物質の表面に多くの電荷を溜められる(帯電)ような表面積の大きい材料が必要ということです。そして、製品化を考える上でその材料は大きな表面積を有していることを前提で限りなく軽くなければいけません。重いということは製品化にとってかなりの懸念事項となります。現在市販されているスーパーキャパシタは軽くて表面積の大きい粉末状態の炭素系多孔質材料やそれら炭素多孔質材料に導電性ポリマーを混ぜてを用いていることが多く、粉末形状のため全体に電気が十分に伝わらず材料本来の性能を十分に発揮できないといった問題点がありました。今回、我々の研究グループでは導電性が優れ1枚に繋がった多孔質グラフェンを用いることで、グラフェン(担体)上で電子をスムーズに移動させてポリピロール(導電性ポリマー)の性能を最大限発揮させることに成功しました。これにより市販のスーパーキャパシタの10倍の出力密度を達成しました。今回の成果は導電性の優れた多孔質グラフェンに導電性ポリマーを担持すると担持したポリマーの性能が損なわれることなく発揮されることを示した論文であり、今後のポリマー担持スーパーキャパシタの開発の指針になることが期待されます。




図(左)グラフェンの表面にポリピロールを担持した状態を観察した電子顕微鏡像。(右)本研究の性能値。

論文は・・・残念ながら有料公開です。
タイトル
Bicontinuous nanotubular graphene–polypyrrole hybrid for high performance flexible supercapacitors


伊藤良一


追伸 現在の最高性能や最新研究動向など調べながら書きましたが間違いがあったら教えてください。

0 件のコメント:

コメントを投稿